18 research outputs found

    Stability and transition of the driven magnetohydrodynamic sheet pinch

    Get PDF
    The stability and transition properties of a bounded, current carrying magnetofluid are explored, using the hydrodynamic theory developed for plane shear flows as a guide. A driven magnetohydrodynamic sheet pinch equilibrium is employed. A sixth order, complex eigenvalue equation which governs the normal modes of small oscillations is derived, and solved numerically by the Chebyshev tau method. Eigenfunctions are shown, as well as the curve of neutral stability. The locus of critical Lundquist numbers has the form of a hyperbola. The nonlinear stability of a primary disturbance of the system is considered. For regions in parameter space close to criticality, a nonlinear stability equation of the Landau type is derived. These regions are characterized by low values of the Lundquist numbers, in contrast with the inviscid, highly conducting limit considered by Rutherford (1973). Amplitude phase planes for these disturbances are exhibited. The full set of two dimensional magnetohydrodynamic equations is solved numerically by a semi-implicit, mixed Fourier pseudospectral-finite difference algorithm. Both linear and random perturbations of the system are followed numerically into the nonlinear regime. Current sheets and deflection currents are nonlinear structures found to be significant to the evolution of the system. A secondary instability mechanism, the dynamic rupturing of the current density sheet, is also observed

    Numerical simulation of the compressible Orszag-Tang vortex 2. Supersonic flow

    Get PDF
    The numerical investigation of the Orszag-Tang vortex system in compressible magnetofluids will consider initial conditions with embedded supersonic regions. The simulations have initial average Mach numbers 1.0 and 1.5 and beta 10/3 with Lundquist numbers 50, 100, or 200. The behavior of the system differs significantly from that found previously for the incompressible and subsonic analogs. Shocks form at the downstream boundaries of the embedded supersonic regions outside the central magnetic X-point and produce strong local current sheets which dissipate appreciable magnetic energy. Reconnection at the central X-point, which dominates the incompressible and subsonic systems, peaks later and has a smaller impact as M increases from 0.6 to 1.5. Similarly, correlation between the momentum and magnetic field begins significant growth later than in subsonic and incompressible flows. The shocks bound large compression regions, which dominate the wavenumber spectra of autocorrelations in mass density, velocity, and magnetic field

    Numerical simulation of solar coronal magnetic fields

    Get PDF
    Many aspects of solar activity are believed to be due to the stressing of the coronal magnetic field by footpoint motions at the photosphere. The results are presented of a fully spectral numerical simulation which is the first 3-D time dependent simulation of footpoint stressing in a geometry appropriate for the corona. An arcade is considered that is initially current-free and impose a smooth footpoint motion that produces a twist in the field of approx 2 pi. The footprints were fixed and the evolution was followed until the field relaxes to another current-free state. No evidence was seen for any instability, either ideal or resistive and no evidence for current sheet formation. The most striking feature of the evolution is that in response to photospheric motions, the field expands rapidly upward to minimize the stress. The expansion has two important effects. First, it suppresses the development of dips in the field that could support dense, cool material. For the motions assumed, the magnetic field does not develop a geometry suitable for prominence formation. Second, the expansion inhibits ideal instabilities such as kinking. The results indicate that simple stearing of a single arcade is unlikely to lead to solar activity such as flares or prominences. Effects are discussed that might possibly lead to such activity

    Modeling the Galactic Center Nonthermal Filaments as Magnetized Wake

    Get PDF
    We simulate the Galactic Center nonthermal filaments as magnetized wakes formed dynamically from amplification of a weak (tens of μ\muG) global magnetic field through the interaction of molecular clouds with a Galactic Center wind. One of the key issues in this cometary model is the stability of the filament against dynamical disruption. Here we show 2-dimensional MHD simulations for interstellar conditions that are appropriate for the Galactic Center. The structures eventually disrupt through a shear driven nonlinear instability but maintain coherence for lengths up to 100 times their width as observed. The final instability, which destroys the filament through shredding and plasmoid formation, grows quickly in space (and time) and leads to an abrupt end to the structure, in accord with observations. As a by-product, the simulation shows that emission should peak well downstream from the cloud-wind interaction site.Comment: postscript file, 7 figs (included); Accepted for publication in ApJ (Part 1

    Plasmoid Formation and Acceleration in the Solar Streamer Belt

    Get PDF
    The dynamical behavior of a configuration consisting of a plane fluid wake flowing in a current sheet embedded in a plasma sheet that is denser than its surroundings is discussed. This configuration is a useful model for a number of structures of astrophysical interest, such as solar coronal streamers, cometary tails, the Earth's magnetotail and Galactic center nonthermal filaments. In this paper, the results are applied to the study of the formation and initial motion of the plasma density enhancements observed by the Large-Angle Spectrometric Coronagraph (LASCO) instrument onboard the Solar and Heliospheric Observatory (SOHO) spacecraft. It is found that beyond the helmet cusp of a coronal streamer, the magnetized wake configuration is resistively unstable, that a traveling magnetic island develops at the center of the streamer, and that density enhancements occur within the magnetic islands. As the massive magnetic island travels outward, both its speed and width increase. The island passively traces the acceleration of the inner part of the wake. The values of the acceleration and density contrasts are in good agreement with LASCO observations

    Exploiting Laboratory and Heliophysics Plasma Synergies

    Get PDF
    Recent advances in space-based heliospheric observations, laboratory experimentation, and plasma simulation codes are creating an exciting new cross-disciplinary opportunity for understanding fast energy release and transport mechanisms in heliophysics and laboratory plasma dynamics, which had not been previously accessible. This article provides an overview of some new observational, experimental, and computational assets, and discusses current and near-term activities towards exploitation of synergies involving those assets. This overview does not claim to be comprehensive, but instead covers mainly activities closely associated with the authors’ interests and reearch. Heliospheric observations reviewed include the Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI) on the National Aeronautics and Space Administration (NASA) Solar Terrestrial Relations Observatory (STEREO) mission, the first instrument to provide remote sensing imagery observations with spatial continuity extending from the Sun to the Earth, and the Extreme-ultraviolet Imaging Spectrometer (EIS) on the Japanese Hinode spacecraft that is measuring spectroscopically physical parameters of the solar atmosphere towards obtaining plasma temperatures, densities, and mass motions. The Solar Dynamics Observatory (SDO) and the upcoming Solar Orbiter with the Heliospheric Imager (SoloHI) on-board will also be discussed. Laboratory plasma experiments surveyed include the line-tied magnetic reconnection experiments at University of Wisconsin (relevant to coronal heating magnetic flux tube observations and simulations), and a dynamo facility under construction there; the Space Plasma Simulation Chamber at the Naval Research Laboratory that currently produces plasmas scalable to ionospheric and magnetospheric conditions and in the future also will be suited to study the physics of the solar corona; the Versatile Toroidal Facility at the Massachusetts Institute of Technology that provides direct experimental observation of reconnection dynamics; and the Swarthmore Spheromak Experiment, which provides well-diagnosed data on three-dimensional (3D) null-point magnetic reconnection that is also applicable to solar active regions embedded in pre-existing coronal fields. New computer capabilities highlighted include: HYPERION, a fully compressible 3D magnetohydrodynamics (MHD) code with radiation transport and thermal conduction; ORBIT-RF, a 4D Monte-Carlo code for the study of wave interactions with fast ions embedded in background MHD plasmas; the 3D implicit multi-fluid MHD spectral element code, HiFi; and, the 3D Hall MHD code VooDoo. Research synergies for these new tools are primarily in the areas of magnetic reconnection, plasma charged particle acceleration, plasma wave propagation and turbulence in a diverging magnetic field, plasma atomic processes, and magnetic dynamo behavior.United States. Office of Naval ResearchNaval Research Laboratory (U.S.

    The Parker problem:existence of smooth force-free fields and coronal heating

    Get PDF

    Transition to turbulent electric current sheet reconnection

    No full text

    Bubble Number Densities In the Wake of a Propeller and a Pump Jet Ship

    No full text
    Bubbly wakes generated by a surface ship are generally the result of cavitation generated by its propulsion system, and air being entrapped along the water line as the ship moves through the water. As this turbulent wake decays, bubbles of different sizes coalesce, break up, and rise at different rates. This results in changing horizontal and vertical bubble distributions that are a function of ship\u27s speed, wake depth, and age. The changing vertical and horizontal distributions have a time and frequency dependent effect on acoustic signals that creates an excess attenuation. A series of acoustic attenuation measurements were taken across the wake of a propeller driven ship using NRL\u27s acoustic wake characterization system. These measurements were taken over a broad range of acoustic frequencies (30 kHz to 140 kHz), ship speeds (18 and 22 knots), wake depths (3 m to 6 m), and wake age (4.5 to 9.7 minutes). The acoustic attenuations across the wake due to varying bubble-size densities were determined experimentally. Using these measured average acoustic attenuations across the wake and the resonant bubble approximation, estimates of the average bubble number densities in the wake of the propeller driven ship were derived. These bubble number densities are compared to those obtained for the wake of a similar sized pump jet ship, (Stanic et al JOE v34, Jan 2009). Results show that the bubble number densities for the propeller driven ship (18 knots) and the pump jet ship (15 knots) at a wake depth of 3 m were very similar. These bubble number densities were also seen to decrease with wake depth and age. As the propeller ship\u27s speed increased, the bubble number densities for the propeller driven ship were lower than those for the pump jet ship at a speed of 15 knots. These results also showed that in general the wake of the propeller driven ship was not as intense and not as persistent as the wake of the pump jet ship at wake depths greater than 3 m and at all ship speeds. © 2013 MTS

    PLASMOID FORMATION AND ACCELERATION IN THE SOLAR STREAMER BELT

    No full text
    ABSTRACT The dynamical behavior of a conÐguration consisting of a plane Ñuid wake Ñowing in a current sheet embedded in a plasma sheet that is denser than its surroundings is discussed. This conÐguration is a useful model for a number of structures of astrophysical interest, such as solar coronal streamers, cometary tails, the EarthÏs magnetotail and Galactic center nonthermal Ðlaments. In this paper, the results are applied to the study of the formation and initial motion of the plasma density enhancements observed by the Large-Angle Spectrometric Coronagraph (LASCO) instrument onboard the Solar and Heliospheric Observatory (SOHO) spacecraft. It is found that beyond the helmet cusp of a coronal streamer, the magnetized wake conÐguration is resistively unstable, that a traveling magnetic island develops at the center of the streamer, and that density enhancements occur within the magnetic islands. As the massive magnetic island travels outward, both its speed and width increase. The island passively traces the acceleration of the inner part of the wake. The values of the acceleration and density contrasts are in good agreement with LASCO observations
    corecore